3.268 \(\int \frac{\cos ^4(e+f x)}{\sqrt{a+b \sec ^2(e+f x)}} \, dx\)

Optimal. Leaf size=143 \[ \frac{\left (3 a^2-2 a b+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{8 a^{5/2} f}+\frac{3 (a-b) \sin (e+f x) \cos (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{8 a^2 f}+\frac{\sin (e+f x) \cos ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{4 a f} \]

[Out]

((3*a^2 - 2*a*b + 3*b^2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(8*a^(5/2)*f) + (3*(a
- b)*Cos[e + f*x]*Sin[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(8*a^2*f) + (Cos[e + f*x]^3*Sin[e + f*x]*Sqrt[a
 + b + b*Tan[e + f*x]^2])/(4*a*f)

________________________________________________________________________________________

Rubi [A]  time = 0.141503, antiderivative size = 143, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {4146, 414, 527, 12, 377, 203} \[ \frac{\left (3 a^2-2 a b+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{8 a^{5/2} f}+\frac{3 (a-b) \sin (e+f x) \cos (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{8 a^2 f}+\frac{\sin (e+f x) \cos ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{4 a f} \]

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^4/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

((3*a^2 - 2*a*b + 3*b^2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(8*a^(5/2)*f) + (3*(a
- b)*Cos[e + f*x]*Sin[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(8*a^2*f) + (Cos[e + f*x]^3*Sin[e + f*x]*Sqrt[a
 + b + b*Tan[e + f*x]^2])/(4*a*f)

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rule 414

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*x*(a + b*x^n)^(p + 1)*(
c + d*x^n)^(q + 1))/(a*n*(p + 1)*(b*c - a*d)), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1)*
(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d,
 n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomial
Q[a, b, c, d, n, p, q, x]

Rule 527

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*n*(b*c - a*d)*(p + 1)), x] + Dist[1/(a*n*(b*c - a*d
)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)
*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos ^4(e+f x)}{\sqrt{a+b \sec ^2(e+f x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right )^3 \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\cos ^3(e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 a f}-\frac{\operatorname{Subst}\left (\int \frac{-3 a+b-2 b x^2}{\left (1+x^2\right )^2 \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{4 a f}\\ &=\frac{3 (a-b) \cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 a^2 f}+\frac{\cos ^3(e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 a f}+\frac{\operatorname{Subst}\left (\int \frac{3 a^2-2 a b+3 b^2}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 a^2 f}\\ &=\frac{3 (a-b) \cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 a^2 f}+\frac{\cos ^3(e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 a f}+\frac{\left (3 a^2-2 a b+3 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 a^2 f}\\ &=\frac{3 (a-b) \cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 a^2 f}+\frac{\cos ^3(e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 a f}+\frac{\left (3 a^2-2 a b+3 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{8 a^2 f}\\ &=\frac{\left (3 a^2-2 a b+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{8 a^{5/2} f}+\frac{3 (a-b) \cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 a^2 f}+\frac{\cos ^3(e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 a f}\\ \end{align*}

Mathematica [C]  time = 16.3486, size = 1840, normalized size = 12.87 \[ \text{result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[e + f*x]^4/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

(3*(a + b)*AppellF1[1/2, -2, 1/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]^8*Sin[e + f*x]
)/(f*Sqrt[a + 2*b + a*Cos[2*(e + f*x)]]*Sqrt[a + b*Sec[e + f*x]^2]*(3*(a + b)*AppellF1[1/2, -2, 1/2, 3/2, Sin[
e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + (a*AppellF1[3/2, -2, 3/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a
 + b)] - 4*(a + b)*AppellF1[3/2, -1, 1/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)])*Sin[e + f*x]^2)*((
3*(a + b)*AppellF1[1/2, -2, 1/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]^5)/(Sqrt[a + 2*
b + a*Cos[2*(e + f*x)]]*(3*(a + b)*AppellF1[1/2, -2, 1/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + (
a*AppellF1[3/2, -2, 3/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] - 4*(a + b)*AppellF1[3/2, -1, 1/2, 5
/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)])*Sin[e + f*x]^2)) - (12*(a + b)*AppellF1[1/2, -2, 1/2, 3/2, Si
n[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]^3*Sin[e + f*x]^2)/(Sqrt[a + 2*b + a*Cos[2*(e + f*x)]]*(
3*(a + b)*AppellF1[1/2, -2, 1/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + (a*AppellF1[3/2, -2, 3/2,
5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] - 4*(a + b)*AppellF1[3/2, -1, 1/2, 5/2, Sin[e + f*x]^2, (a*Si
n[e + f*x]^2)/(a + b)])*Sin[e + f*x]^2)) + (3*(a + b)*Cos[e + f*x]^4*Sin[e + f*x]*((a*f*AppellF1[3/2, -2, 3/2,
 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]*Sin[e + f*x])/(3*(a + b)) - (4*f*AppellF1[3/2,
-1, 1/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]*Sin[e + f*x])/3))/(f*Sqrt[a + 2*b + a*C
os[2*(e + f*x)]]*(3*(a + b)*AppellF1[1/2, -2, 1/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + (a*Appel
lF1[3/2, -2, 3/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] - 4*(a + b)*AppellF1[3/2, -1, 1/2, 5/2, Sin
[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)])*Sin[e + f*x]^2)) - (3*(a + b)*AppellF1[1/2, -2, 1/2, 3/2, Sin[e + f*
x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]^4*Sin[e + f*x]*(2*f*(a*AppellF1[3/2, -2, 3/2, 5/2, Sin[e + f*x]
^2, (a*Sin[e + f*x]^2)/(a + b)] - 4*(a + b)*AppellF1[3/2, -1, 1/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a
+ b)])*Cos[e + f*x]*Sin[e + f*x] + 3*(a + b)*((a*f*AppellF1[3/2, -2, 3/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]
^2)/(a + b)]*Cos[e + f*x]*Sin[e + f*x])/(3*(a + b)) - (4*f*AppellF1[3/2, -1, 1/2, 5/2, Sin[e + f*x]^2, (a*Sin[
e + f*x]^2)/(a + b)]*Cos[e + f*x]*Sin[e + f*x])/3) + Sin[e + f*x]^2*(a*((9*a*f*AppellF1[5/2, -2, 5/2, 7/2, Sin
[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]*Sin[e + f*x])/(5*(a + b)) - (12*f*AppellF1[5/2, -1, 3/2,
 7/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]*Sin[e + f*x])/5) - 4*(a + b)*((3*a*f*AppellF1[5
/2, -1, 3/2, 7/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]*Sin[e + f*x])/(5*(a + b)) - (9*(a +
 b)^3*f*Cot[e + f*x]*Csc[e + f*x]^4*Sqrt[1 - (a*Sin[e + f*x]^2)/(a + b)]*((-2*a*Sin[e + f*x]^2)/(a + b) - (4*a
^2*Sin[e + f*x]^4)/(3*(a + b)^2) + (2*Sqrt[a]*ArcSin[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b]]*Sin[e + f*x])/(Sqrt[a
 + b]*Sqrt[1 - (a*Sin[e + f*x]^2)/(a + b)])))/(8*a^3)))))/(f*Sqrt[a + 2*b + a*Cos[2*(e + f*x)]]*(3*(a + b)*App
ellF1[1/2, -2, 1/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + (a*AppellF1[3/2, -2, 3/2, 5/2, Sin[e +
f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] - 4*(a + b)*AppellF1[3/2, -1, 1/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)
/(a + b)])*Sin[e + f*x]^2)^2) + (3*a*(a + b)*AppellF1[1/2, -2, 1/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a
 + b)]*Cos[e + f*x]^4*Sin[e + f*x]*Sin[2*(e + f*x)])/((a + 2*b + a*Cos[2*(e + f*x)])^(3/2)*(3*(a + b)*AppellF1
[1/2, -2, 1/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + (a*AppellF1[3/2, -2, 3/2, 5/2, Sin[e + f*x]^
2, (a*Sin[e + f*x]^2)/(a + b)] - 4*(a + b)*AppellF1[3/2, -1, 1/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a +
 b)])*Sin[e + f*x]^2))))

________________________________________________________________________________________

Maple [C]  time = 0.455, size = 1701, normalized size = 11.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

-1/8/f/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/a^2*sin(f*x+e)*(-2*cos(f*x+e)^5*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b
))^(1/2)*a^2+3*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))
)^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*Ellipt
icF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3
/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a^2*sin(f*x+e)-2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b
^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f
*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-
(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a*b*sin(f*x+e)+3*2^(1/2)*(1/(a+b)*(I*c
os(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1
/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^
(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b
^2*sin(f*x+e)-6*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)
))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*Ellip
ticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-
(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a^2*sin(f*x+e)+4*2^(1/2)*(1/(a
+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x
+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a
^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+
b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a*b*sin(f*x+e)-6*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(
1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)
*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1
/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/
2)+a-b)/(a+b))^(1/2))*b^2*sin(f*x+e)+2*cos(f*x+e)^4*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2-3*cos(f*x+e)^3
*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2+cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b+3*cos(f*
x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2-cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b-3*
cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b+3*cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^
2+3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b-3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2)/(-1+cos(f*x+e))
/cos(f*x+e)/((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (f x + e\right )^{4}}{\sqrt{b \sec \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(f*x + e)^4/sqrt(b*sec(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [A]  time = 1.50788, size = 1362, normalized size = 9.52 \begin{align*} \left [-\frac{{\left (3 \, a^{2} - 2 \, a b + 3 \, b^{2}\right )} \sqrt{-a} \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} - 256 \,{\left (a^{4} - a^{3} b\right )} \cos \left (f x + e\right )^{6} + 32 \,{\left (5 \, a^{4} - 14 \, a^{3} b + 5 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{4} + a^{4} - 28 \, a^{3} b + 70 \, a^{2} b^{2} - 28 \, a b^{3} + b^{4} - 32 \,{\left (a^{4} - 7 \, a^{3} b + 7 \, a^{2} b^{2} - a b^{3}\right )} \cos \left (f x + e\right )^{2} + 8 \,{\left (16 \, a^{3} \cos \left (f x + e\right )^{7} - 24 \,{\left (a^{3} - a^{2} b\right )} \cos \left (f x + e\right )^{5} + 2 \,{\left (5 \, a^{3} - 14 \, a^{2} b + 5 \, a b^{2}\right )} \cos \left (f x + e\right )^{3} -{\left (a^{3} - 7 \, a^{2} b + 7 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt{-a} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )\right ) - 8 \,{\left (2 \, a^{2} \cos \left (f x + e\right )^{3} + 3 \,{\left (a^{2} - a b\right )} \cos \left (f x + e\right )\right )} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{64 \, a^{3} f}, -\frac{{\left (3 \, a^{2} - 2 \, a b + 3 \, b^{2}\right )} \sqrt{a} \arctan \left (\frac{{\left (8 \, a^{2} \cos \left (f x + e\right )^{5} - 8 \,{\left (a^{2} - a b\right )} \cos \left (f x + e\right )^{3} +{\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt{a} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \,{\left (2 \, a^{3} \cos \left (f x + e\right )^{4} - a^{2} b + a b^{2} -{\left (a^{3} - 3 \, a^{2} b\right )} \cos \left (f x + e\right )^{2}\right )} \sin \left (f x + e\right )}\right ) - 4 \,{\left (2 \, a^{2} \cos \left (f x + e\right )^{3} + 3 \,{\left (a^{2} - a b\right )} \cos \left (f x + e\right )\right )} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{32 \, a^{3} f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/64*((3*a^2 - 2*a*b + 3*b^2)*sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5
*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b
 + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 -
 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x +
 e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) - 8*(2*a^2*cos(f*x + e)^3 + 3*(a^2 - a*b)*cos(f*x + e))*sqrt((a*cos(f
*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a^3*f), -1/32*((3*a^2 - 2*a*b + 3*b^2)*sqrt(a)*arctan(1/4*(8*a^2
*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e
)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e)
)) - 4*(2*a^2*cos(f*x + e)^3 + 3*(a^2 - a*b)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x
 + e))/(a^3*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos ^{4}{\left (e + f x \right )}}{\sqrt{a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**4/(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(cos(e + f*x)**4/sqrt(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (f x + e\right )^{4}}{\sqrt{b \sec \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(cos(f*x + e)^4/sqrt(b*sec(f*x + e)^2 + a), x)